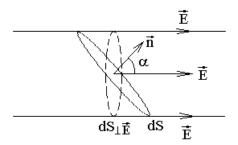
Поток вектора электрического поля E (продолжение).

На рисунке ниже поток поля \vec{E} (число пронизывающих линий поля) через две площадки dS и $dS_{\perp \vec{E}}$ одинаковый. Выразим площадь площадки $dS_{\perp \vec{E}}$ перпендикулярной линиям поля \vec{E} через площадь произвольно ориентированной площадки dS .



Здесь \vec{n} — единичный вектор, направленный по нормали к поверхности dS .

Из рисунка видно, что $dS_{\perp \vec{E}} = dS \cos(\alpha)$.

Тогда
$$d\Phi_E \equiv E\,dS_{\perp\vec{E}} = E\,dS\,\cos\!\left(\alpha\right) = E\,dS\,\cos\!\left(\widehat{\vec{E},\vec{n}}\right).$$

Введем определение вектора площадки: $d\vec{S} \equiv \vec{n} \, dS$. Тогда $\cos\left(\widehat{\vec{E},\vec{n}}\right) = \cos\left(\widehat{\vec{E},d\vec{S}}\right)$.

Тогда
$$d\Phi_E = E \, dS \, \cos \left(\widehat{\vec{E},\vec{n}}\right) = E \, dS \, \cos \left(\widehat{\vec{E},d\vec{S}}\right) = \left(\vec{E},d\vec{S}\right).$$

 $d\Phi_E \equiv \left(\vec{E}, d\vec{S} \right)$ — определение потока поля \vec{E} через произвольно ориентированную площадку $d\vec{S}$.

Электростатическая теорема Гаусса.

Теорема доказывается для неподвижных зарядов. По предположению Максвелла формулировка теоремы остается справедливой и для движущихся зарядов. Все следствия из этого предположения согласуются с опытом, следовательно, так оно и есть.

Теорема Гаусса утверждает, что

$$\Phi_E = \frac{Q}{\varepsilon_0}$$
, где Φ_E — поток через замкнутую поверхность, границу объема

V; Q — сумма зарядов в объеме V.

В системе СГС Гаусса $\Phi_E = 4\pi Q$.

При вычислении потока используется внешняя нормаль к поверхности — нормаль, направленная наружу из объема V.

Докажем теорему сначала для поля одного точечного заряда, а затем для поля любой суперпозиции зарядов.

Совместим начало координат с точечным зарядом q , тогда электрическое поле в любой точке $E = \frac{1}{4\pi\varepsilon_0}\cdot\frac{q}{r^2}$.

Рассмотрим малую площадку dS и поток через нее:

$$d\Phi_E = \left(\vec{E}, d\vec{S}\right) = E \, dS_{\perp \vec{E}} = E \, dS_{\perp \vec{r}} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot dS_{\perp \vec{r}} = \frac{1}{4\pi\varepsilon_0} q \, \frac{dS_{\perp \vec{r}}}{r^2} = \frac{1}{4\pi\varepsilon_0} q \, d\Omega,$$

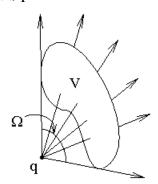
здесь $d\Omega$ — телесный угол, под которым площадка dS видна из точечного заряда q .

Пусть заряд q находится внутри замкнутой поверхности, тогда

$$\begin{split} & \Phi_E = \oint_S d\Phi_E \\ & d\Phi_E = \frac{1}{4\pi\varepsilon_0} q \, d\Omega \end{split} \} = > \\ & \Phi_E = \oint_S \frac{1}{4\pi\varepsilon_0} q \, d\Omega = \frac{q}{4\pi\varepsilon_0} \oint_S d\Omega = \frac{q}{4\pi\varepsilon_0} 4\pi = \frac{q}{\varepsilon_0} \, . \end{split}$$

Итак, если точечный заряд находится внутри замкнутой поверхности, то формула $\Phi_E = \frac{Q}{\varepsilon_0}$ доказана.

Рассмотрим теперь заряд, расположенный снаружи от объема V.



Из рисунка видно, что ближняя и дальняя границы объема относительно заряда видны под одинаковым телесным углом Ω . Тогда потоки через обе части границы одинаковы по модулю и равны $\Phi_E = \frac{1}{4\pi\varepsilon_0} q\,\Omega$, так как

 $d\Phi_E=rac{1}{4\piarepsilon_0}q\,d\Omega$. При вычислении потока рассматривается внешняя нормаль к

замкнутой поверхности, поэтому поток, который втекает в объем — отрицательный, а поток, который вытекает — положительный. Модули потоков равны, но знаки потоков противоположны. В таком случае поток через всю замкнутую поверхность будет равен нулю $\Phi_E = 0$.

В данной конфигурации зарядов внутри объема нет Q=0. Поэтому с учетом $\Phi_E=0$ равенство $\Phi_E=\frac{Q}{\varepsilon_0}$ выполнено и в этом случае.

Рассмотрим теперь вторую часть доказательства, когда зарядов много.

На равенство $\vec{E} = \sum_i \vec{E}_i$ подействуем оператором $\oint_S (\cdot , d\vec{S})$. Вместо точки

в операторе поставим левую часть равенства и получим левую часть нового равенства. Аналогично вместо точки в операторе поставим правую часть старого равенства и получим правую часть нового равенства.

$$\begin{split} & \oint_{S} \left(\vec{E}, d\vec{S} \right) = \oint_{S} \left(\left(\sum_{i} \vec{E}_{i} \right), d\vec{S} \right). \quad \Longrightarrow \quad \oint_{S} \left(\vec{E}, d\vec{S} \right) = \sum_{i} \oint_{S} \left(\vec{E}_{i}, d\vec{S} \right) \Longrightarrow \\ & \Phi_{E} = \sum_{i} \Phi_{E_{i}} \,, \qquad \Longrightarrow \\ & \Phi_{E} = \sum_{i} \Phi_{E_{i}} = \sum_{i} \frac{Q_{i}}{\varepsilon_{0}} = \frac{\sum_{i} Q_{i}}{\varepsilon_{0}} = \frac{Q}{\varepsilon_{0}} \quad \Longrightarrow \\ & \Phi_{E} = \frac{Q}{\varepsilon_{0}} \,, \end{split}$$

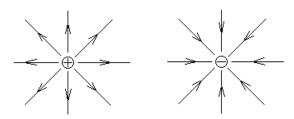
что и требовалось доказать.

Линии поля \vec{E} не рвутся.

Если в объеме нет зарядов Q=0, то $\Phi_E=\frac{Q}{\varepsilon_0}=0$. Поток линий поля равен

нулю — это значит, сколько линий поля втекает в объем, столько и вытекает.

Следовательно, линии поля \vec{E} не начинаются и не заканчиваются в пустом объеме без зарядов. В этом смысле линии поля \vec{E} не рвутся. Это справедливо и для переменных электрических полей.



Линии поля \vec{E} вытекают из положительных зарядов и втекают в отрицательные заряды. В этом смысле заряды буквально являются источниками поля.

Теорема Ирншоу.

Невозможно статическое распределение дискретных зарядов, в котором хотя бы один заряд находится в устойчивом равновесии.

Отметим, что неустойчивое равновесие возможно, например:

Доказательство теоремы Ирншоу.

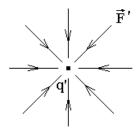
Проведем доказательство методом "от противного".

Предположим, что для одного из зарядов есть устойчивое равновесие и получим противоречие.

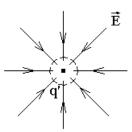
Все заряды дискретные — точечные.

Пусть в устойчивом равновесии находится заряд q, например положительный. Будем рассматривать его, как пробный заряд q'.

Для устойчивого равновесия поле сил при смещении в любую сторону пытается вернуть заряд в точку равновесия. Тогда, если сдвигать заряд q', то поле сил \vec{F}' со стороны остальных зарядов на этот заряд q' имеет следующий вид.



Аналогично выглядит и поле \vec{E} остальных зарядов, кроме рассматриваемого заряда q', так как $\vec{E} \equiv \frac{\vec{F}'}{q'}$. Рассмотрим маленькую сферу вокруг заряда q'.



Из рисунка видно, что поток поля \vec{E} остальных зарядов через эту сферу отрицательный $\Phi_E < 0$, линии поля втекают в сферу. Это с одной стороны, а с другой стороны поток равен нулю $\Phi_E = 0$. И действительно, для дискретных зарядов внутри малой сферы с радиусом меньше наименьшего расстояния между зарядами вокруг заряда q' нет других зарядов, и для этих других зарядов Q = 0. Следовательно, для поля \vec{E} остальных зарядов, кроме заряда q', получим $\Phi_E = \frac{Q}{\varepsilon_0} = 0$.

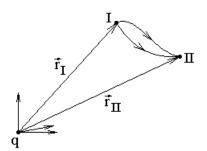
Итак
$$egin{cases} \Phi_E < 0 \ \Phi_E = 0 \end{cases}$$
 . Полученное противоречие доказывает теорему.

Заметим, что для непрерывных распределений заряда теорема Ирншоу не справедлива. Например, точечный положительный заряд в центре шара с одинаковой в разных точках отрицательной объемной плотностью заряда находится в положении устойчивого равновесия.

Потенциальность кулоновских сил.

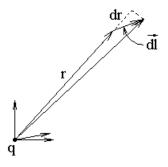
Поле сил потенциально (силы консервативны), если работа по перемещению в этом поле пробного заряда не зависит от формы траектории, а зависит только от начальной и конечной точки.

Докажем сначала потенциальность сил со стороны поля одного точечного заряда q. Для этого найдем работу электростатических сил $A'_{I \to II}$ при перемещении пробного заряда q' из точки I в точку II в поле одиночного заряда q:



Пусть начало координат совпадает с зарядом q . Найдем работу dA' на малом участке пути $d\vec{l}$:

$$dA' = \left(\vec{F}', d\vec{l}\right) = \left(q'\vec{E}, d\vec{l}\right) = q'E \, dl_E = q'E \, dl_r \approx q'E \, dr = q' \cdot \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot dr = \frac{q'q}{4\pi\varepsilon_0} \cdot \frac{dr}{r^2}.$$



Из рисунка видно, что $dl_r \approx dr$.

Работа на конечном участке

$$A'_{I \to II} = \int_{I}^{II} dA' = \int_{\vec{r}_{I}}^{\vec{r}_{II}} \frac{q'q}{4\pi\varepsilon_{0}} \cdot \frac{dr}{r^{2}} = \frac{q'q}{4\pi\varepsilon_{0}} \int_{\vec{r}_{I}}^{\vec{r}_{II}} \frac{dr}{r^{2}} =$$

$$= \frac{q'q}{4\pi\varepsilon_{0}} \cdot \left(-\frac{1}{r}\right)\Big|_{r_{I}}^{r_{II}} = \frac{q'q}{4\pi\varepsilon_{0}} \cdot \left(\frac{1}{r_{I}} - \frac{1}{r_{II}}\right) \qquad \Longrightarrow$$

$$A'_{I o II} = rac{q'q}{4\pi arepsilon_0} \cdot \left(rac{1}{r_I} - rac{1}{r_{II}}
ight)$$
 — работа электростатических сил по

перемещению пробного заряда q' в поле заряда q из точки \vec{r}_I в точку \vec{r}_{II} , если начало координат совпадает с зарядом q.

Это выражение не зависит от формы траектории, следовательно, поле \vec{E} одного точечного заряда потенциально.

Докажем теперь потенциальность сил произвольного распределения точечных зарядов.

Из принципа суперпозиции

$$\begin{split} \vec{E} &= \sum_{i} \vec{E}_{i} \quad \left| \begin{array}{c} \vec{r}_{II} \\ \vec{r}_{I} \end{array} \left(q' \cdot \vec{q} \cdot \vec{l} \right) \right. \\ &= > \\ \vec{r}_{II} \left(q' \cdot \vec{E} \right), d\vec{l} \cdot \left| = \int_{\vec{r}_{I}}^{\vec{r}_{II}} \left(q' \cdot \vec{E}_{i} \right), d\vec{l} \right. \right. \\ &= > \\ \int_{\vec{r}_{I}}^{\vec{r}_{II}} \left(q' \cdot \vec{E}_{i} \cdot d\vec{l} \cdot \vec{l} \right) = \sum_{i} \int_{\vec{r}_{I}}^{\vec{r}_{II}} \left(q' \cdot \vec{E}_{i} \cdot d\vec{l} \cdot \vec{l} \right) \\ &= > \\ \int_{\vec{r}_{I}}^{\vec{r}_{II}} \left(\vec{F}' \cdot d\vec{l} \cdot \vec{l} \right) = \sum_{i} \int_{\vec{r}_{I}}^{\vec{r}_{II}} \left(\vec{F}'_{i} \cdot d\vec{l} \cdot \vec{l} \right) \\ &= > \\ \int_{\vec{r}_{I}}^{\vec{r}_{II}} dA' = \sum_{i} \int_{\vec{r}_{I}}^{\vec{r}_{II}} dA'_{i} \\ &= > \\ A'_{I \rightarrow II} = \sum_{i} A'_{i,I \rightarrow II} = \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} q_{i} \left(\frac{1}{r_{iI}} - \frac{1}{r_{iII}} \right) \\ A'_{I \rightarrow II} = \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} q_{i} \left(\frac{1}{r_{iI}} - \frac{1}{r_{iII}} \right) = \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} q_{i} \left(\frac{1}{|\vec{r}_{I} - \vec{r}_{i}|} - \frac{1}{|\vec{r}_{II} - \vec{r}_{i}|} \right) \end{split}$$

— работа электростатических сил по перемещению пробного заряда q' из точки I в точку II. Здесь $\vec{r}_{iI} = \vec{r}_I - \vec{r}_i$ — вектор из i-го заряда в точку I, $\vec{r}_{iII} = \vec{r}_{II} - \vec{r}_i$ — вектор из i-го заряда в точку II. Это выражение не зависит от формы траектории, следовательно, поле \vec{E} произвольного распределения неподвижных зарядов потенциально.

Потенциальная энергия заряда в электростатическом поле.

Энергия — это способность совершить работу.

Электростатическая энергия заряда q' в точке I по определению равна работе электростатических сил по перемещению этого заряда из точки I на бесконечность $W'_I \equiv A'_{I \to \infty}$.

$$\begin{split} W'_{I} &\equiv A'_{I \to \infty} = A'_{I \to II} \Big|_{II \to \infty} = \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} q_{i} \left(\frac{1}{r_{iI}} - \frac{1}{r_{iII}} \right) \Big|_{r_{iII} \to \infty} = \\ &= \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{iI}} = \frac{q'}{4\pi\varepsilon_{0}} \sum_{i} \frac{q_{i}}{\left| \vec{r}_{I} - \vec{r}_{i} \right|} \quad \Longrightarrow \end{split}$$

 $W'(\vec{r}) = \frac{q'}{4\pi\varepsilon_0} \sum_i \frac{q_i}{|\vec{r} - \vec{r_i}|}$ - энергия заряда q' в точке с радиус-вектором \vec{r} в поле остальных зарядов q_i .

Потенциал электростатического поля. Потенциал по определению — это потенциальная энергия единичного заряда:

$$\varphi \equiv \frac{W'}{q'}.$$

<u>Потенциал произвольного распределения зарядов.</u> Для системы точечных зарядов q_i получим следующее выражение для потенциала φ в точке с радиус-вектором \vec{r}

$$\varphi(\vec{r}) \equiv \frac{W'(\vec{r})}{q'} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{|\vec{r} - \vec{r}_i|}.$$

кроме дискретных зарядов рассматриваются заряды, распределенные по объемам, по поверхностям и по линиям, то

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \sum_{i} \frac{q_i}{\left|\vec{r} - \vec{r}_i\right|} + \int_{V'} \frac{\rho(\vec{r}') dV'}{\left|\vec{r} - \vec{r}'\right|} + \int_{S'} \frac{\sigma(\vec{r}') dS'}{\left|\vec{r} - \vec{r}'\right|} + \int_{l'} \frac{\tau(\vec{r}') \cdot dl'}{\left|\vec{r} - \vec{r}'\right|} \right\}.$$

 $\varphi = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$ — потенциал поля точечного заряда.

В системе СГС Гаусса $\varphi = \frac{q}{r}$.

Связь потенциала и напряженности электростатического поля.

$$\varphi(\vec{r}_I) = \frac{W'(\vec{r}_I)}{q'} = \frac{A'_{I \to \infty}}{q'} = \frac{\int\limits_{I}^{\infty} (\vec{F}', d\vec{l})}{q'} = \int\limits_{I}^{\infty} (\frac{\vec{F}'}{q'}, d\vec{l}) = \int\limits_{I}^{\infty} (\vec{E}, d\vec{l}) = >$$

 $\varphi(\vec{r}) = \int_{-\infty}^{\infty} (\vec{E}, d\vec{l}) = \int_{-\infty}^{\infty} E_l dl$ — связь потенциала и напряженности в одну

сторону.

Получим теперь связь между \vec{E} и φ в другую сторону. Рассмотрим

$$\varphi(\vec{r}_{II}) - \varphi(\vec{r}_{I}) = \int_{\vec{r}_{II}}^{\infty} E_{l} dl - \int_{\vec{r}_{I}}^{\infty} E_{l} dl = -\int_{\vec{r}_{I}}^{\vec{r}_{II}} E_{l} dl.$$

Устремим $\vec{r}_{II} \rightarrow \vec{r}_{I}$ и получим:

$$E_l = -rac{\partial arphi}{\partial l}$$
 — для любого направления l .

Рассмотрим направления вдоль осей x, y, z:

$$\begin{cases} E_x = -\frac{\partial \varphi}{\partial x} \\ E_y = -\frac{\partial \varphi}{\partial y} \\ E_z = -\frac{\partial \varphi}{\partial z} \end{cases} \implies \\ \vec{E} = E_x \vec{i} + E_y \vec{j} + E_z \vec{k} = -\left(\frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k}\right) \implies \\ \vec{E} = -\vec{\nabla} \varphi, \text{ где} \\ \vec{\nabla} \equiv \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \text{ — оператор набла.} \\ grad (\varphi) \equiv \vec{\nabla} \varphi \text{ — определения градиента.} \\ \begin{cases} \vec{E} = -\vec{\nabla} \varphi \\ \varphi(\vec{r}) = \int_z^\infty E_l dl \end{cases} \text{ — связь напряженности и потенциала в обе стороны.} \end{cases}$$

Связь силы и потенциальной энергии для любых потенциальных полей.

$$arphi\equiv rac{W^{\,\prime}}{q^{\,\prime}}$$
 и $ec E\equiv rac{ec F^{\,\prime}}{q^{\,\prime}}$ и из $arphi(ec r^{\,\prime})=\int\limits_{ec r}^{\infty}\Bigl(ec E,dec l^{\,\prime}\Bigr)$ мы получили $ec E=-ec
ablaarphi$.

Тогда, повторив выкладки, из равенства $W(\vec{r}) = \int_{\vec{r}}^{\infty} (\vec{F}, d\vec{l})$ мы получим

 $\vec{F} = -\vec{\nabla} W$. То есть, если $W(\vec{r})$ — это энергия или способность совершить работу при перемещении из точки \vec{r} на бесконечность, то сила может быть выражена через энергию по формуле $\vec{F} = -\vec{\nabla} W$.

Можно доказать и в обратную сторону, что из равенства $\vec{F} = -\vec{\nabla} W$ следует $W(\vec{r}) = \int\limits_{\vec{r}}^{\infty} (\vec{F}, d\vec{l})$. И действительно, рассмотрим интеграл:

$$-\int_{\vec{r}}^{\infty} \left(\vec{F}, d\vec{l} \right) = -\int_{\vec{r}}^{\infty} \left(-\vec{\nabla}W, d\vec{l} \right) = \int_{\vec{r}}^{\infty} \left(\vec{\nabla}W \right)_{l} dl = \int_{\vec{r}}^{\infty} \frac{\partial W}{\partial l} dl = \int_{\vec{r}}^{\infty} dW = W \Big|_{\vec{r}}^{\infty} = -W \left(\vec{r} \right)$$

То есть, если для силы \vec{F} удалось подобрать такую функцию W, что $\vec{F} = -\vec{\nabla} W$, то сила — потенциальна, а W — потенциальная энергия, соответствующая этой силе. Подробнее, почему $(\vec{\nabla} W)_I = \frac{\partial W}{\partial I}$, смотри в следующем вопросе.

Физический смысл градиента.

что проекция градиента на любое направление равна производной по этому направлению.

например произвольной функции, $\vec{\nabla} \varphi \equiv \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$. Проекция градиента на направление оси x — это

коэффициент при единичном векторе \vec{i} вдоль оси x, то есть $\frac{\partial \varphi}{\partial x}$. Ось x можно направить произвольно вдоль любого направления l, следовательно, проекция градиента $\vec{\nabla} \varphi$ на произвольное направление l равна $\frac{\partial \varphi}{\partial l}$.

Итак, проекция градиента на любое направление равна производной по этому направлению. Проекция максимальна на направление самого вектора. Следовательно, производная по направлению максимальна в направлении самого вектора градиента. То есть направление градиента — это направление, в котором максимальна производная по направлению, то есть направление, в котором функция быстрее всего возрастает.

Градиент как вектор показывает направление, в котором функция быстрее всего возрастает, а длина вектора градиента равна производной от функции по этому направлению.

$$div(\vec{A}) = (\vec{\nabla}, \vec{A}) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Теорема Гаусса — Остроградского.

(математическая теорема, без доказательства)

$$\int_{V} div(\vec{A}) \cdot dV = \oint_{S} (\vec{A}, d\vec{S})$$

Здесь
$$\oint_S \left(\vec{A}, d\vec{S} \right) \equiv \Phi_A$$
 — поток произвольного векторного поля \vec{A} через

замкнутую поверхность S, которая ограничивает объем V. При вычислении потока используется внешняя нормаль к поверхности.

Вместо доказательства сравним два равенства:

$$\int_{a}^{b} f' dx = f(b) - f(a)$$

$$\int_{V} (\vec{\nabla}, \vec{A}) \cdot dV = \oint_{S} (\vec{A}, d\vec{S})$$

В обеих формулах интеграл от производной равен сумме значений функции по границе области интегрирования.