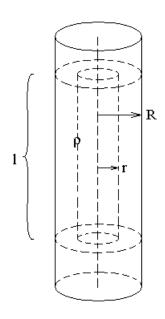
<u>Поля симметричных распределений зарядов. 2. Цилиндрическая</u> симметрия.

Задача. Дан бесконечно длинный цилиндр радиуса R с плотностью заряда ρ . Найти поле \vec{E} .

Решение.

Чтобы найти поле E внутри заряженного цилиндра рассмотрим применение теоремы Гаусса к соосному цилиндру с радиусом $r \le R$ и длиной l.



$$\Phi_E = rac{Q}{arepsilon_0}$$

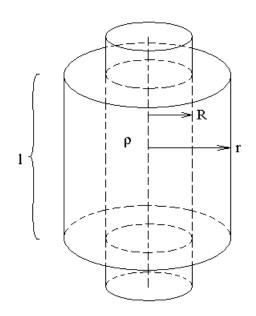
$$ES = rac{
ho V}{arepsilon_0}$$

$$E \cdot 2\pi r l = rac{
ho \cdot \pi r^2 l}{arepsilon_0}$$

$$E = rac{
ho r}{2arepsilon_0}$$
 при $r \le R$.

В системе СГС Гаусса: $E=2\pi\rho r$ при $r\leq R$.

Найдем теперь поле \vec{E} снаружи заряженного цилиндра при $r \geq R$. Рассмотрим цилиндр с радиусом $r \geq R$ и высотой l .



$$\Phi_{E} = \frac{Q}{\varepsilon_{0}}$$

$$ES = \frac{\rho V}{\varepsilon_{0}}$$

$$E \cdot 2\pi r l = \frac{\rho \cdot \pi R^{2} l}{\varepsilon_{0}}$$

Здесь объем $V=\pi R^2 l$, так как только в этой части объема $\pi r^2 l$ есть заряды. Тогда

$$E = \frac{\rho R^2}{2\varepsilon_0 r}$$
 при $r \ge R$.

В системе СГС Гаусса: $E=2\pi\rho\frac{R^2}{r}$ при $r\geq R$.

Факультативная вставка.

Попробуем найти потенциал φ .

Пусть точка наблюдения находится снаружи заряженного цилиндра $r \geq R$.

$$\varphi(\vec{r}) = \int_{r}^{\infty} E_{l} dl = \int_{r}^{\infty} E dr = \int_{r}^{\infty} \frac{\rho R^{2}}{2\varepsilon_{0} r} dr = \frac{\rho R^{2}}{2\varepsilon_{0}} \int_{r}^{\infty} \frac{dr}{r} = \frac{\rho R^{2}}{2\varepsilon_{0}} \ln(r) \Big|_{r}^{\infty} = \infty$$

Интеграл расходится, так как $\ln(r) \xrightarrow[r \to \infty]{} \infty$.

В реальном опыте потенциал не будет бесконечным, так как не бывает бесконечно длинных заряженных цилиндров.

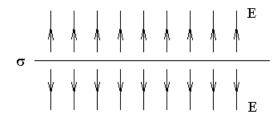
Если h — длина заряженного цилиндра, то при r>>h цилиндр выглядит, как точечный заряд. Тогда

$$E pprox rac{1}{4\piarepsilon_0} \cdot rac{Q}{r^2} \qquad \Longrightarrow \qquad \varphi pprox rac{1}{4\piarepsilon_0} \cdot rac{Q}{r}, \qquad \text{где } Q =
ho V =
ho \cdot \pi R^2 h \,.$$

Конец факультативной вставки.

Поля симметричных распределений зарядов. 3. Плоская симметрия.

Бесконечная заряженная плоскость создает напряженность поля $E = \frac{\sigma}{2\varepsilon_0}$ с каждой стороны от плоскости:



Это можно доказать, опираясь только на симметрию задачи и на скачок поля \vec{E} при переходе через заряженную поверхность: $E_{2n} - E_{1n} = \frac{\sigma}{\varepsilon_0}$.

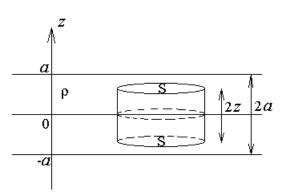
Задача. Дан бесконечный слой толщиной 2a с плотностью заряда ρ . Найти поле \vec{E} .

Решение.

слою.

Сначала поищем напряженность внутри заряженного слоя при $|z| \le a$.

Применим теорему Гаусса к цилиндру с площадью основания S и высотой 2z. Пусть цилиндр симметрично расположен относительно заряженного слоя.

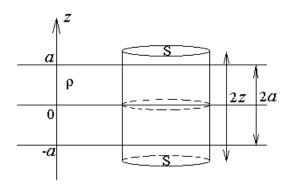


$$\Phi_E = \frac{Q}{\varepsilon_0}$$
 \implies $2ES = \frac{\rho V}{\varepsilon_0}$ \implies $2ES = \frac{\rho}{\varepsilon_0} \cdot S \cdot 2z$ \implies

 $E_z = \frac{\rho}{\varepsilon_0} z$ при $|z| \leq a$, где ось z направлена перпендикулярно заряженному

В системе СГС Гаусса: $E_z = 4\pi \rho z$ при $|z| \le a$.

Теперь поищем напряженность снаружи заряженного слоя при $|z| \ge a$.



$$\Phi_E = \frac{Q}{\varepsilon_0}$$
 \implies $2ES = \frac{\rho V}{\varepsilon_0}$ \implies $2ES = \frac{\rho}{\varepsilon_0} \cdot S \cdot 2a$ \implies

 $E = \frac{\rho a}{\varepsilon_0}$ при $|z| \ge a$, где ось z направлена перпендикулярно заряженному слою.

В системе СГС Гаусса: $E_z = 4\pi \rho a$ при $|z| \ge a$.

Дифференциальное уравнение для потенциала.

$$\frac{\rho}{\varepsilon_0} = div\Big(\vec{E}\Big) = div\Big(-\vec{\nabla}\varphi\Big) = \Big(\vec{\nabla}, -\vec{\nabla}\varphi\Big) = -\Big(\vec{\nabla}, \vec{\nabla}\Big)\varphi = -\nabla^2\varphi = -\Delta\varphi\;, \text{ где } \varphi = -\Delta\varphi\;, \text{ где } \varphi$$

$$\frac{\rho}{\varepsilon_0} = div(\vec{E}) = div(-\vec{\nabla}\varphi) = (\vec{\nabla}, -\vec{\nabla}\varphi) = -(\vec{\nabla}, \vec{\nabla})\varphi = -\nabla^2\varphi = -\Delta\varphi,$$
где
$$\Delta \equiv \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
— оператор Лапласа или лапласиан. Тогда

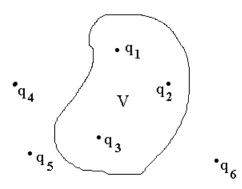
 $\Delta \varphi = -rac{
ho}{arepsilon_0}$ — уравнение Пуассона. Это и есть дифференциальное уравнение для потенциала φ .

Если $\rho = 0$, то

 $\Delta \varphi = 0$ — уравнение Лапласа — уравнение для потенциала в области без зарядов.

Понятие о краевой задаче электростатики.

Рассмотрим систему зарядов и некоторый объем V. Пусть одна часть зарядов находится внутри объема V, а другая — снаружи.



Если известно расположение всех зарядов, то потенциал в любой точке найти легко:

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{|\vec{r} - \vec{r_i}|}$$

Пусть расположение зарядов известно только внутри объема V, но не известно за его пределами.

Можно ли заменить неизвестное расположение зарядов снаружи объема какой-нибудь информацией о потенциале на границе объема, чтобы можно было единственным образом найти потенциал внутри объема?

В этом и состоит краевая задача электростатики.

Краевая задача Дирихле.

Уравнение $\Delta \varphi = -\frac{\rho}{\mathcal{E}_0}$ имеет единственное решение в объеме V, если в каждой точке границы S объема V задан потенциал $\varphi(\vec{r})\big|_{\vec{r}\in S} \equiv \varphi\big|_S$ (не одинаковый потенциал во всех точках границы, а в каждой точке границы задано свое значение потенциала).

Подразумевается, что в каждой точке внутри объема V задана плотность зарядов $\rho(\vec{r}).$

Краевая задача Неймана.

Уравнение $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$ имеет единственное решение в объеме V , если в

каждой точке границы S задана производная $\left. \frac{\partial \varphi}{\partial n} \right|_S$ от потенциала по нормали к

границе и хотя бы в одной точке из всех границ задан потенциал.

Если потенциал не задан ни в одной точке границ, то решение единственное с точностью до произвольного слагаемого в виде константы.

Краевая задача с границами в виде проводников.

Уравнение $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$ имеет единственное решение в объеме V, если каждая граница объема — проводник, на каждой i-ой границе задан полный заряд Q_i и хотя бы в одной точке границ задан потенциал.

Если потенциал не задан ни в одной точке границ, то решение единственное с точностью до произвольного слагаемого в виде константы.

Краевая задача общего вида.

Уравнение $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$ имеет единственное решение в объеме V, если на каждой границе объема V задано одно из условий вида 1, 2 или 3 и хотя бы в одной точке границ задан потенциал.

Если потенциал не задан ни в одной точке границ, то решение единственное с точностью до произвольного слагаемого в виде константы.

Доказательство единственности решения краевой задачи электростатики.

Предположим, что есть два решения φ_1 и φ_2 , и для каждого из них выполнены граничные условия. Докажем, что два решения φ_1 и φ_2 тождественны.

Рассмотрим напряженности $\vec{E}_i = -\vec{\nabla}\,\varphi_i$ соответствующие этим двум решениям для потенциала. Покажем, что для тождественности φ_1 и φ_2 достаточно доказать, что в каждой точке объема $\vec{E}_1 - \vec{E}_2 = 0$. Это равенство эквивалентно равенству $\vec{\nabla}(\varphi_1 - \varphi_2) = 0$, так как $\vec{E}_i = -\vec{\nabla}\,\varphi_i$. Кроме того, в каждой из четырех краевых задач хотя бы в одной точке S_0 границы S выполнено условие $\varphi_1|_{S_0} = \varphi_2|_{S_0}$. Откуда следует, что в этой точке границы некоторая функция, равная разности решений, равна нулю $(\varphi_1 - \varphi_2)|_{S_0} = 0$.

Производная от разности потенциалов во всех точках объема равна нулю $\vec{\nabla}(\varphi_1-\varphi_2)=0$, а сама разность равна нулю $(\varphi_1-\varphi_2)\big|_{S_0}=0$ хотя бы в одной точке S_0 . Тогда разность потенциалов во всех точках объема равна нулю $(\varphi_1-\varphi_2)\big|_{V}=0$ или $|\varphi_1|_{V}=|\varphi_2|_{V}$, и два решения $|\varphi_1|_{V}=|\varphi_2|_{V}$ тождественны.

То есть для тождественности решений φ_1 и φ_2 теперь достаточно доказать равенство $\vec{E}_1 - \vec{E}_2 = 0$ для всех точек объема, и тогда теорема о единственности решения для потенциала φ в рассматриваемом объеме будет доказана. Чтобы доказать $\vec{E}_1 - \vec{E}_2 = 0$ докажем два равенства:

$$\begin{cases} \int_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) dV = \oint_{S} \left(\left(\varphi_{1} - \varphi_{2} \right) \vec{\nabla} \left(\varphi_{1} - \varphi_{2} \right), d\vec{S} \right) \\ \oint_{S} \left(\left(\varphi_{1} - \varphi_{2} \right) \vec{\nabla} \left(\varphi_{1} - \varphi_{2} \right), d\vec{S} \right) = 0 \end{cases}$$

Если мы их докажем, то получим $\int\limits_V \Big(\vec{E}_1 - \vec{E}_2, \vec{E}_1 - \vec{E}_2 \Big) dV = 0$ или

$$\int\limits_V \left| \vec{E}_1 - \vec{E}_2 \right|^2 dV = 0$$
 , то есть $\vec{E}_1 - \vec{E}_2 = 0$ в каждой точке объема.

Докажем сначала первое равенство системы. Рассмотрим правую часть равенства:

$$\oint_{S} \left((\varphi_{1} - \varphi_{2}) \vec{\nabla} (\varphi_{1} - \varphi_{2}), d\vec{S} \right) = \int_{V} div \left((\varphi_{1} - \varphi_{2}) \vec{\nabla} (\varphi_{1} - \varphi_{2}) \right) dV \quad \text{по} \quad \text{теореме}$$

Гаусса — Остроградского для векторного поля $(\varphi_1 - \varphi_2)\vec{\nabla}(\varphi_1 - \varphi_2)$. Тогда $\oint_S ((\varphi_1 - \varphi_2)\vec{\nabla}(\varphi_1 - \varphi_2), d\vec{S}) = \int_V div ((\varphi_1 - \varphi_2)\vec{\nabla}(\varphi_1 - \varphi_2)) \cdot dV = \int_V (\vec{\nabla}, (\varphi_1 - \varphi_2)\vec{\nabla}(\varphi_1 - \varphi_2)) \cdot dV$

Левая набла в последнем выражении — это производная от произведения $(\varphi_1-\varphi_2)$ на $\vec{\nabla}(\varphi_1-\varphi_2)$. Тогда цепочку равенств можно продолжить, как производную от первого сомножителя на нетронутый второй, плюс производная от второго сомножителя на нетронутый первый:

$$\begin{split} & \dots = \int\limits_{V} \left(\vec{\nabla} \left(\varphi_{1} - \varphi_{2} \right), \vec{\nabla} \left(\varphi_{1} - \varphi_{2} \right) \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \left(\vec{\nabla}, \vec{\nabla} \left(\varphi_{1} - \varphi_{2} \right) \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{\nabla} \varphi_{1} - \vec{\nabla} \varphi_{2}, \vec{\nabla} \varphi_{1} - \vec{\nabla} \varphi_{2} \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \left(\vec{\nabla}, \vec{\nabla} \right) \left(\varphi_{1} - \varphi_{2} \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \Delta \left(\varphi_{1} - \varphi_{2} \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \left(\Delta \varphi_{1} - \Delta \varphi_{2} \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \left(\Delta \varphi_{1} - \Delta \varphi_{2} \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV + \int\limits_{V} \left(\varphi_{1} - \varphi_{2} \right) \cdot \left(-\frac{\rho}{\varepsilon_{0}} - \left(-\frac{\rho}{\varepsilon_{0}} \right) \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV \cdot AV \right) \cdot \left(-\frac{\rho}{\varepsilon_{0}} - \left(-\frac{\rho}{\varepsilon_{0}} \right) \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV \cdot AV \right) \cdot \left(-\frac{\rho}{\varepsilon_{0}} - \left(-\frac{\rho}{\varepsilon_{0}} \right) \right) \cdot dV = \\ & = \int\limits_{V} \left(\vec{E}_{1} - \vec{E}_{2}, \vec{E}_{1} - \vec{E}_{2} \right) \cdot dV \cdot AV \right) \cdot \left(-\frac{\rho}{\varepsilon_{0}} - \left(-\frac{\rho}{\varepsilon_{0}} \right) \right) \cdot dV =$$

Таким образом, первое равенство системы доказано.

Докажем теперь второе равенство системы:

$$\oint_{S} ((\varphi_{1} - \varphi_{2}) \vec{\nabla} (\varphi_{1} - \varphi_{2}), d\vec{S}) = 0.$$

Сначала преобразуем левую часть равенства к более удобному виду. Рассмотрим подынтегральное выражение:

$$\begin{aligned} & \left((\varphi_1 - \varphi_2) \vec{\nabla} (\varphi_1 - \varphi_2), d\vec{S} \right) = (\varphi_1 - \varphi_2) \cdot \left(\vec{\nabla} (\varphi_1 - \varphi_2), d\vec{S} \right) = \\ & = (\varphi_1 - \varphi_2) \cdot \left(\vec{\nabla} (\varphi_1 - \varphi_2) \right)_{d\vec{S}} \cdot dS = (\varphi_1 - \varphi_2) \cdot \left(\vec{\nabla} (\varphi_1 - \varphi_2) \right)_{\vec{n}} \cdot dS = \\ & = (\varphi_1 - \varphi_2) \cdot \frac{\partial (\varphi_1 - \varphi_2)}{\partial n} \cdot dS = (\varphi_1 - \varphi_2) \cdot \left(\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n} \right) \cdot dS \end{aligned}$$

И так, нужно доказать равенство

$$\oint_{S} (\varphi_{1} - \varphi_{2}) \cdot \left(\frac{\partial \varphi_{1}}{\partial n} - \frac{\partial \varphi_{2}}{\partial n} \right) \cdot dS = 0,$$

докажем его отдельно для краевой задачи каждого вида.

 $1. \ \ \text{Рассмотрим} \ \ \text{доказательство} \ \ \text{равенства} \ \ \oint\limits_{S} \left(\varphi_1-\varphi_2\right) \cdot \left(\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n}\right) \cdot dS = 0$ для задачи Дирихле, в которой $\left. \varphi_1 \right|_{S} = \left. \varphi_2 \right|_{S}$ в любой точке границы S .

 $|\varphi_1|_S = |\varphi_2|_S$ => $|\varphi_1 - \varphi_2|_S = 0$ => Первый сомножитель $|\varphi_1 - \varphi_2|_S$ под интегралом в любой точке границы, по которой и идет интегрирование, равен нулю. Следовательно, весь интеграл равен нулю, и равенство доказано для задачи Дирихле.

2. Рассмотрим теперь доказательство равенства $\oint_S (\varphi_1 - \varphi_2) \cdot \left(\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n} \right) \cdot dS = 0 \ \,$ для задачи Неймана.

В краевой задаче Неймана $\frac{\partial \varphi_1}{\partial n}\Big|_S = \frac{\partial \varphi_2}{\partial n}\Big|_S$, следовательно, на поверхности S второй сомножитель подынтегрального выражения тождественно равен нулю, и интеграл равен нулю.

3. Теперь рассмотрим доказательство равенства $\oint_S (\varphi_1 - \varphi_2) \cdot \left(\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n} \right) \cdot dS = 0 \ \,$ для задачи с границами в виде проводников.

Вся поверхность проводника в электростатике имеет одинаковый потенциал — является эквипотенциальной поверхностью. Это утверждение будет доказано чуть позднее, когда мы будем рассматривать свойства проводников. В символьном виде это может быть записано, как $\phi|_{S_i} = const_i$, где S_i — поверхность i-го проводника границы, если граница многосвязная.

Тогда
$$(\varphi_1 - \varphi_2)|_{S_i} = const_i$$

Этот сомножитель, как постоянную величину, можно вынести из под интеграла по границе *i*-го проводника:

$$\oint_{S_{i}} (\varphi_{1} - \varphi_{2}) \cdot \left(\frac{\partial \varphi_{1}}{\partial n} - \frac{\partial \varphi_{2}}{\partial n} \right) \cdot dS = (\varphi_{1} - \varphi_{2}) \cdot \oint_{S_{i}} \left(\frac{\partial \varphi_{1}}{\partial n} - \frac{\partial \varphi_{2}}{\partial n} \right) dS = (\varphi_{1} - \varphi_{2}) \cdot \oint_{S_{i}} (-E_{1n} + E_{2n}) \cdot dS$$

Чуть позднее, рассматривая свойства проводников, мы получим, что над поверхностью проводника $E_n=\frac{\sigma}{\varepsilon_0}$, где σ — поверхностная плотность зарядов

на проводнике. Тогда $-E_{1n}+E_{2n}=-\frac{\sigma_1}{\varepsilon_0}+\frac{\sigma_2}{\varepsilon_0} =>$

$$(\varphi_1 - \varphi_2) \cdot \oint_{S_i} (-E_{1n} + E_{2n}) \cdot dS = (\varphi_1 - \varphi_2) \cdot \oint_{S_i} \left(-\frac{\sigma_1}{\varepsilon_0} + \frac{\sigma_2}{\varepsilon_0} \right) \cdot dS =$$

$$= \frac{\varphi_1 - \varphi_2}{\varepsilon_0} \cdot \left(\oint_{S_i} \sigma_2 dS - \oint_{S_i} \sigma_1 dS \right) = \frac{\varphi_1 - \varphi_2}{\varepsilon_0} \cdot \left(Q_{2i} - Q_{1i} \right).$$

Здесь Q_{1i} и Q_{2i} — полный заряд на i-ом проводнике в первом и втором решениях. Поскольку в краевой задаче с проводниками заряд на каждом проводнике задан, получаем $Q_{2i} = Q_{1i}$. Следовательно, интеграл равен нулю и для этой краевой задачи.

Для краевой задачи общего вида равенство $\oint_S (\varphi_1 - \varphi_2) \cdot \left(\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n} \right) \cdot dS = 0$ будет выполнено для каждой границы, так как в

краевой задаче общего вида на каждой границе выполнено одно из трех предыдущих краевых условий.

В результате равенство
$$\oint_S \left(\left(\varphi_1 - \varphi_2 \right) \vec{\nabla} \left(\varphi_1 - \varphi_2 \right), d\vec{S} \right) = 0$$
 доказано для

краевой задачи любого из четырех видов, и единственность решения краевой задачи электростатики доказана для этих четырех видов задач.

К вопросу о существовании решения краевой задачи электростатики.

Дифференциальное уравнение Пуассона $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$ с заданным потенциалом на границе $\varphi|_S$ можно преобразовать к интегральному уравнению Фредгольма второго рода. Для этих интегральных уравнений существование решения задачи доказано, поэтому решение краевой задачи Дирихле в электростатике всегда существует.

Решения краевой задачи Неймана и задачи с проводниками существуют, если объем бесконечен. Если объем ограничен, то в этих задачах решение существует не всегда, а только при некоторых ограничениях на граничные условия на внешней границе объема.

Интегральное уравнение Фредгольма второго рода в одномерном случае:

$$\varphi(x) = \lambda \int_{a}^{b} K(x, x') \varphi(x') dx' + f(x),$$

где $\varphi(x)$ — неизвестная функция, для которой составлено уравнение; λ — параметр уравнения (константа); K(x,x') — ядро уравнения.

$$\int_{a}^{b} K(x,x')\varphi(x')dx' = f(x)$$
 — уравнение Фредгольма 1 рода.

Основные свойства проводников в электростатическом поле.

Проводник — материал, в котором под действием электрического поля \tilde{E} течет электрический ток.

Свойства проводников в электростатике.

1. $\vec{E}_{\textit{внутри}} = 0$ — поле \vec{E} внутри проводника отсутствует.

Докажем это утверждение методом "от противного". Предположим, что $\vec{E}_{\mathit{BHVmpu}} \neq 0$ и получим противоречие.

И действительно. Если электростатическое поле внутри неподвижного проводника не равно нулю $\vec{E}_{\it внутри} \neq 0$, то по определению проводника в нем течет ток, тогда заряды движутся, и не выполняются условия электростатики. Полученное противоречие доказывает, что в электростатике поле $\vec{E}_{\it внутри}$ внутри проводника равно нулю.

Если же отойти от рассмотрения электростатики, тогда, если в проводнике течет ток, то в проводнике есть отличное от нуля электрическое поле. Приложенное к проводнику напряжение создает в нем напряженность электрического поля и электрический ток.

 $2. \qquad 0 = \vec{E}_{\it внутри} = -\vec{\nabla} \, \varphi_{\it внутри} = 0 \qquad => \qquad \varphi_{\it внутри} = \it const \ -- \ каждый$ проводник в электростатике эквипотенциален.

3.
$$\left\{ \begin{aligned} \frac{\rho_{\text{внутри}}}{\varepsilon_0} &= \operatorname{div}(\vec{E}_{\text{внутри}}) \\ \vec{E}_{\text{внутри}} &= 0 \end{aligned} \right. \Rightarrow \rho_{\text{внутри}} = 0 =>$$

В электростатике нескомпенсированные заряды проводника могут находиться только на его поверхности.

4.
$$\begin{cases} E_{2n} - E_{1n} = \frac{\sigma}{\varepsilon_0} \\ \vec{E}_{\textit{внутри}} = 0 \end{cases} \implies E_n = \frac{\sigma}{\varepsilon_0}$$
— нормальная составляющая

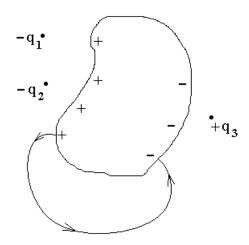
поля \vec{E} над поверхностью проводника с поверхностной плотностью заряда σ , где \vec{n} — нормаль, направленная из проводника наружу.

5.
$$\begin{cases} E_{2\tau} - E_{1\tau} = 0 \\ \vec{E}_{\textit{внутри}} = 0 \end{cases}$$
 => $E_{\tau} = 0$ тангенциальная

составляющая поля \vec{E} над поверхностью проводника отсутствует.

6. (Факультативно) В электростатике невозможно, чтобы линия поля \vec{E} начиналась и заканчивалась на одном и том же проводнике, так как вдоль линии поля \vec{E} потенциал понижается, а поверхность проводника эквипотенциальна.

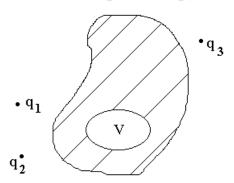
Невозможно:



Экранирование электростатического поля проводником.

Переменное электромагнитное поле тоже экранируется, но хуже. Постоянное магнитное поле проводник не экранирует, магнитное поле проникает в проводник. Переменное магнитное поле порождает переменное электрическое поле. Если же магнитное поле проникает внутрь проводника и изменяется, то оно порождает в проводнике и переменное электрическое поле. Именно поэтому переменное электрическое поле экранируется проводником не полностью.

Экранирование электростатического поля состоит в том, что если в проводнике есть полость без зарядов, то внутри полости $\vec{E}=0$ независимо от того заряжен ли проводник и есть ли заряды снаружи проводника.



Рассмотрим объем полости V внутри тела проводника. Граница S объема V эквипотенциальна, так как является поверхностью проводника. Пусть потенциал этой поверхности равен φ_0 . Тогда $\varphi\big|_S = \varphi_0$.

Придумаем в объеме V решение для уравнения $\Delta \varphi = -\frac{\rho}{\varepsilon_0}$. Придумаем решение в виде постоянного потенциала $\varphi(\vec{r})\big|_V = \varphi_0$.

Это решение удовлетворяет условию краевой задачи Дирихле $\left.\phi\right|_{S}=\phi_{0}.$ Это решение удовлетворяет и уравнению Пуассона $\Delta\phi=-rac{
ho}{arepsilon_{0}}$ в объеме V , так

как в этом объеме нет зарядов: $\rho = 0$, и так как производные от постоянного потенциала φ_0 равны нулю: $\Delta \varphi = 0$.

Из единственности решения краевой задачи Дирихле следует, что другого решения для потенциала в полости быть не может. Значит, придуманное нами решение для потенциала в объеме полости V и будет настоящим решением для потенциала в полости.

$$\varphi(\vec{r})|_{V} = \varphi_0 = const$$
 \Longrightarrow $\vec{E} = 0$

Внутри полости поле \vec{E} отсутствует или, что то же самое, проводник экранирует электростатическое поле.